F_{π} : a Must Do at 12 GeV D. J. Mack Hall C 12 GeV CDR Workshop April 9, 2002 - I. Introduction - II. Recent Results and Upcoming Run - III. F_{π} at 12 GeV The JLab F_{π} Program: Introduction ## F_{π} in pQCD Farrar and Jackson calculated the normalized, leading asymptotic Q^2 dependence of the pion form factor¹ as: $$F_\pi=-2 rac{f_\pi^2}{bQ^2lnQ^2}$$ $$Q^2F_\pi= rac{-2f_\pi^2}{blnQ^2}$$ where $b = (11 - 2N_f/3)/(16\pi^2)$, and f_{π} is the pion decay constant from $\pi^+ \to \mu^+ + \nu$. This asymptotic normalization does not exist in the case of the nucleon form factors. There is a genuine prediction for F_{π} at large Q^2 . ¹PRL **43**, 246 (1979) ## The Pion as a pQCD Laboratory Is gur and Llewellyn-Smith^2 estimated that perturbative contribution to G_M^p (the magnetic form factor) at $Q^2=5$ is $\le 1\%$ Meanwhile, the perturbative contribution to F_{π} at $Q^2 = 5$ may be $\simeq 50\%$. ²PRL 52, 1080 (1984) The JLab F_{π} Program: Introduction ### F_{π} by Pion Electroproduction Without an e- π collider, F_{π} can only be determined at $Q^2 \geq 0.5$ via pion electroproduction. The target is the virtual pion cloud of the proton: For unpolarized $p(e, e'\pi^+)n$ scattering $$rac{d\sigma}{dt} = \sigma_T + \epsilon \, \sigma_{L} + \epsilon \cos 2\phi \, \sigma_{TT} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi \, \sigma_{LT}$$ and for small -t, σ_L dominates because the interference terms vanish and due to the proximity to the pion pole: $$\sigma_L \propto rac{-2tQ^2}{(t-m_\pi^2)^2} \cdot g_{\pi NN}^2(t) \cdot F_\pi^2$$ with σ_L dominating due to the proximity of the pole. In practice one must extract F_{π} from a model which is gauge invariant, valid at large W to avoid the resonance region, and which accounts for rescattering. (More on this later.) The JLab F_{π} Program: Introduction #### Mandelstam t and t_{min} In terms of experimentally accessible 4-vectors: $$t\equiv (\gamma_v-\pi)^2=-Q^2+m_\pi^2-2 u E_\pi+2 u p_\pi cos heta_{q\pi}$$ For more insight, in the non-relativistic limit the momentum transfer is: $$t \equiv (p-n)^2 \simeq -P_n^2$$ Thus -t is simply the squared nucleon recoil momentum. For fixed Q^2 , one can approach the pole most closely by letting $\theta_{q\pi}=0$ and making the energy transfer large: The JLab F_{π} Program: The Experiment # F_{π} Technical Issues #### • Small π spectrometer angles Moved HMS quad string backward Refit the HMS optics #### • L-T separation: 2 beam energies per Q^2 (scheduling issue) good systematics control over a wide range of scattered electron \vec{p} careful calibration using p(e,e'p) to determine offsets • Contamination by unflagged μ 's from π decay (5%) Monte Carlo takes this into account. # Removing Accidental Coincidences: <u>A Cut on Coincidence Time</u> A beam burst hits the target every 2 nsec. In accidental coincidences, the electron and pion originated from reactions in *different* beam bursts. Shown are well-separated peaks for real $e \cdot \pi^+$ and $e \cdot p$ coincidences. For momenta below 6 GeV/c, this cut helps get rid of unwanted protons. Only events in the real $e \cdot \pi^+$ peak are accepted. A few underlying random coincidences must be subtracted. The JLab F_{π} Program: Analysis # Reconstructed Missing Mass: a Cut to Ensure Exclusivity For the reaction $e + p \rightarrow e' + \pi^+ + X$, $$MM_X=\sqrt{(e+p-e'-\pi^+)^2}$$ On linear and log scales, respectively, one finds A cut which constrains $MM_X \simeq M_{neutron}$ removes backgrounds with higher inelasticity and suppresses random coincidences. ## **Extracting Response Functions from Cross Sections** $$rac{d\sigma}{dt} = \sigma_T + \epsilon\,\sigma_L + \epsilon \cos 2\phi\,\sigma_{TT} + \sqrt{2\epsilon(1+\epsilon)} \cos\phi\,\sigma_{LT}$$ Adequate coverage in $\phi_{q\pi}$ for each -t bin is needed to separate the response functions. The pion spectrometer was scanned about \vec{q} . A fit then determines $\sigma_T + \epsilon \sigma_L$, σ_{TT} , and σ_{LT} . The JLab F_{π} Program: Results ## Reaction Mechanism Test: π^-/π^+ Ratios Using a Deuterium target, one can measure the ratio $$R_L \equiv rac{\sigma_L(\gamma+n ightarrow\pi^-+p)}{\sigma_L(\gamma+p ightarrow\pi^++n)}$$ #### Pion Exchange The coupling of γ_v to π^{\pm} is the same magnitude. Assuming dominance of this amplitude $$R_L\simeq rac{Q_{\pi^-}^2}{Q_{\pi^+}^2}=1$$ #### Quark Knockout In this potential background scenario⁸, forward π^- are the result of Q=-1/3 down quarks being knocked out of the neutron, and forward π^+ are the result of Q=+2/3 up quarks ejected from the proton. Assuming dominance, $$R \simeq rac{2Q_d^2}{2Q_u^2} = rac{(-1/3)^2}{(+2/3)^2} = 1/4$$ ⁸Carlson and Milana, PRL **65** 1717 (1990) # JLab First Separated π^-/π^+ Ratios: Test of the Reaction Mechanism The longitudinal ratio is $\simeq 1$ at low -t. This, and the strong -t dependence in σ_L , are consistent with pion pole dominance. Good news for F_{π} ! # JLab Separated Cross Sections vs VGL Regge #### Longitudinal - - F_{π} is chosen so the VGL curve passes through the data at t_{min} . - At most Q^2 , the data are slightly steeper than the calculation. - Our errors on F_{π} take into account this difference in slope, which was treated as due to a destructively interfering background. ### Present World Data for F_{π} - ullet Our higher Q^2 data¹³ are larger than the trend of the older data. - Low Q^2 lattice calculations need to be revisited. - F_{π} is quite hard. The Maris and Tandy curve (which fits very well) is nearly indistinguishable from a monopole form factor which describes the pion radius. - Many models fitted to the old data are systematically low. Serious models of F_{π} should have their free parameter(s) fitted to data in a different sector, and then used to *predict* F_{π} . ¹³J. Volmer et al, PRL 86, 1713 (2001) # Q^2 Dependence of σ_L and σ_T Taking care to interpolate our data to a fixed -t and W, we find that $d\sigma_L/dt$ is growing with Q^2 : and find σ_L/σ_T is growing even FASTER. L-T separations can be expected to become *easier*! #### What Else With 6 GeV Beam? ## Phase II in 2003 Our Phase I measurement was limited by 4 GeV beam. Our next measurements will be limited by spectrometer angle and momentum ranges. Our goals will be: - Increase our maximum Q^2 for F_{π} from 1.6 to 2.5 - Repeat $Q^2=1.6$ at higher W to study data vs Regge systematics. This will complete the HMS-SOS 6 GeV F_{π} program. # F_{π} at Intermediate Q^2 : Theoretical Calculations A small selection of available models shows significant differences at intermediate Q^2 : Kisslinger and Wang 14 found the soft and hard contributions to be roughly equal at $Q^2 \simeq 5$. ¹⁴NP B399 (1993) 63 # Beam Energy Needed for Higher Q^2 #### **Assumptions:** - $-t_{min} \le 0.20$ (ie, $\le 10m_{\pi}^2$) - ullet $\Delta\epsilon \geq 0.25$ - HMS-SHMS - 12 GeV beam is needed for $Q^2 = 6$. - 16 GeV beam is needed for $Q^2 = 8$. F_{π} at higher Q^2 requires a high beam energy! # Kinematics of L-T Separations at Higher Q^2 $$p(e,e'\pi^+)n$$ $$Q^2 = 5. ~~ { m W} = 3.25 ~~ t_{min} = \text{-}0.15 \ P_\pi = 7.74 ~GeV/c$$ | E_{beam} | $\boldsymbol{E'}$ | $oldsymbol{ heta_{e'}}$ | $ heta_\pi$ | $oldsymbol{\epsilon}$ | |------------------|-------------------|-------------------------|-------------|-----------------------| | (GeV) | (GeV) | (deg) | (deg) | | | 9.1 | 1.27 | 38.3 | 5.5 | 0.24 | | 10.0 | 2.17 | 27.7 | 7.1 | 0.39 | | 10.9 | 3.07 | 22.2 | 8.2 | 0.49 | | | | | | $\Delta\epsilon=0.25$ | | 11.1 | 3.27 | 21.3 | 8.4 | 0.51 | | 11.5 | 3.67 | 19.8 | 8.8 | 0.55 | | 11.9 | 4.07 | 18.4 | 9.1 | 0.59 | | | | | | $\Delta\epsilon=0.35$ | - 10.9 GeV beam is good. 11.9 GeV beam is better. - No stringent demands on the electron arm. - Pion momenta are quite large. - Pion angles are quite small. # Kinematics of L-T Separations at Higher Q^2 A maximum central momentum of about 9 GeV/c is needed. A minimum central scattering angle of about 5.5° is needed. To measure F_{π} at large Q^2 , a new high momentum, small angle spectrometer must be built. ## Particle Identification at 12 GeV Presently at JLab, many experiments still discriminate hadrons by Time of Flight. Much of this capability will be lost at 12 GeV. Assuming a conservative 200 ps time resolution (rms) and the criterion that separation should be at least 3σ : - πk discrimination is lost around 3.8 GeV/c - πp discrimination is lost around 7.3 GeV/c Threshold Cerekov detectors will be much more important at 12 GeV. ## Basic parameters of the SHMS ### Parameters which proposal writers care about: | Max. Central Momentum | $11~{ m GeV/c}$ | | | |------------------------|------------------------|--|--| | Min. scattering angle | 5.5° | | | | Momentum acceptance | 20 % | | | | Momentum resolution | .15%- $.2%$ | | | | xptar,yptar resolution | 1-2 mrad, 1-2 mrad | | | | Ytar resolution | .26 cm | | | | Vertical acceptance | $\pm 42~\mathrm{mrad}$ | | | | Horizontal acceptance | $\pm 14~\mathrm{mrad}$ | | | | Solid angle | $2~\mathrm{msr}$ | | | | Opening angle with HMS | 16° | | | #### Parameters which only an optician could love: Configuration QQ(DQ)Bend Angle 18.4° Focusing mode Double 400 kG-m Max. rigidity Dispersion 1.764 cm/%D/M $1.20 \, \, \mathrm{cm} / \%$ Mx1.47 My1.02 Focal plane angle 4.88° Focal plane dimension 40 cm (X) x 20 cm (Y) Optical length 18.5 m #### SHMS Detectors The SHMS detectors will be broadly similar to the present HMS detectors, with several critical modifications for PID at large momenta: - \bullet e-hadron discrimination will require a longer, lower pressure gas Cerenkov. - πk discrimination will require a heavy gas Cerenkov. # Projected Errors for F_{π} at 12 GeV #### Running Conditions - HMS-SHMS - 100 days - $4 \text{cm } LH_2 \text{ target}$ - 50 μA # F_{π} at 12 GeV Summary - ullet F_{π} was determined for $Q^2=.6$ 1.6: Very soft models for F_{π} are ruled out. Q^2F_{π} is not yet asymptotic. - Outlook for higher Q^2 remains good: Longitudinal π^-/π^+ ratio suggests dominance of pion exchange, L/T ratio is increasing with Q^2 . • A new measurement is planned for 2003: to reach $Q^2 = 2.5$, to study data vs Regge slope discrepancies. • A new spectrometer is needed for light meson electroproduction studies at 12 GeV: > Central momenta to at least 9 GeV/c, Central angles as low as 5.5° , Clean pion identification for $P_{\pi}=4$ -9 GeV/c. The proposed SHMS suits our needs! F_{π} as measured by SHMS-HMS at 12 GeV is the only way to observe the transition between the confinement and perturbative regimes in an exclusive reaction.